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Abstract

Spectral information such as natural frequencies from a frequency response function has been widely utilized in
structural parameter identification problems. Recently the use of other information in the frequency response function,
e.g., antiresonant frequencies, is getting attention. This paper presents application of additional spectral information
such as antiresonant frequencies and static compliance dominant frequencies to structural parameter identification
problems. The existing sensitivity-based system identification technique is extended by adopting the antiresonant fre-
quencies and the static compliance dominant frequencies, and the performance of the approach using additional spec-
tral information is compared with the approach using only natural frequencies via a numerical example of a mechanical
system. The results of the numerical study indicate that the use of additional spectral information improves the accu-
racy in parameter identification.
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1. Introduction

There exists an increasing need for reliable and efficient nondestructive methods to identify structural
parameters (e.g. stiffness, mass, or damping) and to assess the structural integrity of such critical structures
as aerospace structures, offshore structures, buildings, and bridges. To date, a corpus of interdisciplinary
knowledge from physics, mathematics, materials science, applied mechanics, and computer engineering
have coalesced to provide reliable nondestructive evaluation for monitoring the health of critical structures.
However, nondestructive evaluation would have been an empty promise if applied identification methods
were not reliable enough to obtain the confidence level needed to make structural safety or useful life deci-
sions. Even with many system identification (SI) techniques and nondestructive damage evaluation (NDE)
algorithms developed to date (Doebling et al., 1996), the SI and the NDE procedures for complex structural
systems still present many problems, and improving generality and reliability of the SI and the NDE are
paramount and one of the more pressing problems in the civil engineering field (Farrar and Jauregui,
1996). In an attempt to resolve these issues, this paper focuses on the performance improvement in the
SI, aspect of the problem namely the parameter identification, by utilizing additional spectral information.

System identification is defined as the determination, on the basis of input and output, of the characteristics
or properties of a systemwithin a specified class of systems towhich it is equivalent (Zadeh, 1962). The process
of SI consists of threemain steps: (1) defining amodel and planning some experiments tomeasure the response
of the system (model selection and testing); (2) using the givenmodel and themeasured response to estimate the
unknown parameters of the model (parameter estimation); and (3) validating and refining the model (model
validation ormodel updating). In structuralmechanics, the parameter estimation has been used to identify the
structural parameters and consequently to evaluate the modal parameters (e.g. resonant frequencies, mode
shapes, and modal damping) which define the behavior of a structural system. The identified parameters
obtained using SI techniques for structures can then be applied to the problems of NDE, and the assessment
of structural degradation and deterioration that can reduce the useful life and safety of structures.

The spectral quantities usually utilized in SI techniques are natural frequencies, modeshapes, and fre-
quency response functions (FRF). However, in real application, only a few frequencies can be extracted
with acceptable accuracy, and measured modeshapes and FRFs are usually accurate to within 10% at best
(Friswell and Mottershead, 1995). Also, even though the direct use of FRF in SI problems can simplify
modal analysis procedures, it requires extensive computational efforts (Mottershead, 1990; Lin and Ewins,
1994). These limitations motivated the introduction of other quantities in the FRF to be utilized in the
problem of identifying structural systems. One such addition is the antiresonant frequencies. The main
advantage of the use of antiresonances is that the antiresonances are located along the frequency axis
and can be easily and accurately measurable like natural frequencies.

To date, the antiresonant frequencies have been applied to several engineering problems. Lallement and
Cogan (1992) suggested the use of antiresonant frequencies in addition to natural frequencies and mode
shapes to identify structural systems. Kajiwara and Nagamatsu (1993) proposed sensitivity analysis using
natural frequencies and antiresonant frequencies for structural dynamic optimization problems. The pro-
posed approach was applied to determine the optimum thickness of a plate in order to eliminate resonance
peaks from the FRF. Gao and Randall (1996) proposed a procedure to extract poles and zeros of transfer
functions from response vibrations. In addition, the procedure for regeneration of updated FRFs could be
used in an inverse filtering process to obtain better estimates of the forcing functions than would result from
assuming no change in the structural properties. Mottershead (1998) demonstrated that the sensitivities of
the antiresonant frequencies could be expressed as a linear combination of the sensitivities of the natural
frequencies and the mode shapes. Another useful finding was that if closely predicted natural frequencies
and mode shapes failed to converge together with the antiresonant frequencies onto measured values then it
had to be concluded that the analytical model could not represent the physical system under test. D�Ambro-
gio and Fregolent (1998) utilized the antiresonances for model validation via force residual updating—
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interactive technique (FRU-IT) since the antiresonant frequencies can reduce the influence of measurement
errors that cause the ill-conditioning of the system identification problem. Moreover, it was shown that
antiresonance information is not independent of mode shape information, which is preferable for two rea-
sons: (1) antiresonant frequencies can be identified from experimental FRFs with much less error than
mode shapes and (2) correlation between experimental and analytical antiresonances is a good index of
the correlation between experimental and analytical FRFs. Wahl et al. (1999) discussed the resonance–anti-
resonance behavior of FRFs for lightly damped linear systems in experimental structural analysis. Based on
the FRF measurements of structures supported arbitrarily, it was possible to determine the natural frequen-
cies of structures under ideal boundary conditions that were impossible to obtain in laboratory tests. They
concluded that the properties of antiresonances might lead to future applications in different fields of struc-
tural engineering such as system identification and location of structural faults. The antiresonant frequen-
cies have also been applied in the problems of model updating (Rade et al., 1996; Jons and Turcotte, 2002)
and crack detection (Dilena and Morassi, 2004; Douka et al., 2004). However, the use of antiresonant fre-
quencies to SI problems is still in its early stage and the applicability to various SI techniques has not been
fully investigated. Finally, so far no attempt has been made to utilize other information from a FRF than
natural and antiresonant frequencies.

In this paper, the use of additional information from an FRF including antiresonant frequencies and
other information, e.g., the static compliance dominant (SCD) frequencies (Nam, 2001), to a parameter
identification problem is investigated. The SCD frequencies are the frequencies that yield the same static
compliances of the structural system on the FRF. The possible use of the additional spectral information
to the parameter identification problem is explored using a sensitivity-based SI technique. The following
steps are performed: (1) additional spectral information that can be possibly utilized in developing more
accurate and effective SI techniques is introduced; (2) a sensitivity-based SI technique is extended to accom-
modate the additional spectral information and (3) numerical studies are conducted on a mechanical model
to investigate the performance of parameter identification using additional information from an FRF, i.e.,
natural frequencies, antiresonant frequencies, and SCD frequencies.
2. Additional spectral information

At a given frequency, x, the FRF, H(x), incorporates not only information about the structural para-
meters of the system but also about the force function. The available information at a set of frequencies
(e.g. natural frequencies) in the FRF can be defined as spectral information. An important feature that
arises from the FRF is that the system output will inevitably contain spectral contents that do not appear
in the time domain analysis. In that regard, any value in an FRF, H(x), can be defined as potential spectral
information. However, to be applicable to identification problems, the spectral information has to satisfy
the following requirements: (1) the information has to be easily and consistently extractable; (2) the infor-
mation has to effectively reflect the changes in the structural properties of the system; and (3) the informa-
tion can be extracted with acceptable accuracy.

In this paper, two types of spectral information, antiresonant frequencies and SCD frequencies, are se-
lected. The antiresonant frequencies are associated with the dips in the magnitude of the FRF, while the
natural frequencies are the peaks in the magnitude of the FRF. The frequencies that yield the same static
compliances of the structural system on the FRF can be defined as SCD frequencies.

2.1. Antiresonant frequencies

Antiresonant frequencies can be obtained from either experimental or analytical FRFs. The FRF ma-
trix, H(x), can be written in terms of the determinants of the dynamic stiffness matrix as (Ewins, 1984)
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HðxÞ ¼ f=u ¼ ðk� x2mÞ�1 ¼ adjðk� x2mÞ
detðk� x2mÞ ð1Þ
where m and k are the (n · n) mass and stiffness matrices, respectively; f and u are the (n · 1) force and dis-
placement vectors of the structural system, respectively; and adj( ) and det( ) are the adjoint and the deter-
minant matrices, respectively. The i–jth components of the FRF can be rewritten in terms of modeshapes as
HijðxÞ ¼
Xn

k¼1

UikUjk

ðkk � x2Þ ð2Þ
where kk is the kth eigenvalue, and Uik and Ujk are the elements i and j of the kth mode shape vector.
To obtain antiresonant frequencies from experimental FRFs, there are two available methods: antires-

onant frequencies can be achieved by a dip-picking technique that selects the dips from the log magnitude–
frequency plot of a given FRF, or antiresonant frequencies can be calculated by a curve-fitting technique
using the rational fraction polynomial representation of a given FRF and determining the zeros of the
function.

To obtain antiresonant frequencies from analytical FRFs (e.g. from a finite element model), one can cal-
culate the zeroes of the FRF matrix that is the inverse of the dynamic stiffness matrix. By definition, the
zeroes of the i–jth FRF occur at frequencies that cause the numerator, adj(k � x2m), in (1) to become sin-
gular. Also, they can be calculated from the eigenvalue problem as the eigenvalues of (m�1k)ij.

In addition, antiresonant frequencies can be achieved from both point FRFs and transfer FRFs. When
any row and its corresponding column (e.g. ith row and column) of the FRF matrix in (1) are removed,
which is called the point FRF, the structure is grounded at the ith degree of freedom and its eigenvalues
may interlace the eigenvalues of the given original structure. If the removed row and column are different
(e.g. ith row and jth column), called the transfer FRF, the physical meaning of the fictitious structure is not
clear due to the fact that the FRF matrix is not symmetric. Thus, antiresonant frequencies of the fictitious
structure are the zeroes of the modified FRF, Hij(x), which may be either point FRF or transfer FRF, of
the given structure with the ith row and jth column deleted (Mottershead, 1998). It should be clear that
antiresonant frequencies could be abundant since the zeroes of FRFs occur at different frequencies for dif-
ferent measurement locations.

2.2. Static compliance dominant frequencies

Additional pieces of information from an FRF can be utilized to improve the accuracy of SI techniques.
In this study, the SCD frequency is introduced.

From (2), the i–jth transfer FRF can be rewritten as
HijðxÞ ¼
Xn

k¼1

UikUjk

ðx2
k � x2Þ ð3Þ
where xk is the kth natural frequency. The static compliance can be obtained from (3) with x = 0 as
follows:
Hijð0Þ ¼
Xn

k¼1

UikUjk

x2
k

ð4Þ
For different values of the parameter x, let a function be defined as
�HijðxÞ ¼
Xn

k¼1

UikUjk

ðx2
k � x2Þ �

Xn

k¼1

UikUjk

x2
k

ð5Þ
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Fig. 1. Graphical representation of natural, antiresonant, and SCD frequencies.
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Then, roots of (5) can be found by setting the whole expression equals to zero.
�HijðxÞ ¼ 0 ð6Þ

The positive roots of (6) are the frequencies of the i–jth transfer FRF that can yield the same static com-

pliances of the structural system. Those frequencies are defined as SCD frequencies in this study. The
graphical representations of the SCD frequencies are depicted in Fig. 1 along with the natural and antires-
onant frequencies. In Fig. 1, the corresponding frequencies to the dots represent the SCD frequencies, while
the peaks and the dips correspond to the resonant and the antiresonant frequencies, respectively. The SCD
frequencies can be extracted from experimental data by selecting the frequency values from the magnitude
plot of the FRF at x = 0.
3. System identification theory

Sensitivity type methods have gained acceptance due to their ability to reconstruct the correct measured
resonant frequencies and mode shapes. Almost all sensitivity-based methods utilize a sensitivity matrix
based on the partial derivatives of modal parameters with respect to structural parameters. During the iden-
tification process, the analytical mass and stiffness matrices of a structural system are updated. An updated
eigensolution is obtained and the same process is repeated until the results are satisfied within a predeter-
mined tolerance. It should be noted that the formulation of the sensitivity matrix is based on a Taylor�s
series expansion and hence the method is an approximate one. In general, sensitivity-type methods depend
on the selection of parameters and the definition of the optimization constraints. For instance, the para-
meters can be elements of the mass and stiffness matrices. Sensitivity-based methods provide an updated
analytical model capable of reproducing the measured modal parameters, but they have the drawback of
modifying only the most sensitive elements. A sensitivity-type method that utilizes statistics as the
basis for model updating was formulated by Collins et al. (1974) to systematically use experimental
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measurements of the modal parameters of a structure to modify the stiffness and mass terms of a finite ele-
ment model of the structure. The sensitivity matrix technique was exploited further in combination with SI
and nondestructive damage detection studies by Stubbs (1985).

In this section, a sensitivity-based SI method proposed by Stubbs and Osegueda (1990) is presented and
extended to accommodate other spectral information, i.e., antiresonant frequencies and static compliance
dominant frequencies.

3.1. Parameter identification algorithm

Let the mathematical model of a system be defined by n scalar parameters xi in which i = 1,2, . . . ,n. The
parameter, xi, can be collected into the vector x. Using Taylor series expansion
f ðxþ dxÞ ¼
Xn

k¼0

1

k!
f ðkÞðxÞdxk þ EnðdxÞ ð7Þ
where
EnðdxÞ ¼
1

ðnþ 1Þ! f
ðnþ1ÞðnÞdxnþ1 ð8Þ
in which the point n is between x and x + dx. Considering the first term in (7) and assuming that f(x + dx)
represents the true solutions for a real system and that f(x) describes the approximate solutions for a mathe-
matical model, the error, e, can be expressed as
e ¼ f ðxþ dxÞ � f ðxÞ ¼
Xn

i¼1

of
oxi

dxi ð9Þ
If (9) is applied to m functions, the jth expression for the error is given by
ej ¼
Xn

i¼1

ofj
oxi

dxi; ðj ¼ 1; 2; . . . ;mÞ ð10Þ
Normalizing (10) dividing by fj yields (Stubbs et al., 1994)
ej
fj

¼
Xn

i¼1

ofj
oxi

xi
fj

dxi
xi

ð11Þ
or
zj ¼
Xn

i¼1

fjiai ð12Þ
where zj ¼ ej
fj
; ai ¼ dxi

xi
; and fji ¼ ofj

oxi
xi
fj
, representing the jth fractional change of the solution vectors between

real and mathematical system, the ith fractional changes of the scalar parameters, and the jth sensitivities
with respect to the ith scalar parameters, respectively. Eq. (12) can be rewritten in matrix form as
Z ¼ Fa ð13Þ
The vector Z is obtained from the differences in results for a real and a mathematical system. The gra-
dient of f, the scalar parameters x, and the solution of the function f determine the sensitivity matrix F. The
vector a is the only unknown to estimate, e.g., stiffness, mass, or damping. Note that, in this paper, only
changes in stiffness parameters are considered in a, because in structural parameter identification problems:
(1) the change in masses is negligible in common structural damage (e.g., cracks, time-dependent stiffness
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degradation in concrete structure, delamination in composite structures, loosen connections in steel struc-
tures); and (2) the effect of changes in damping parameters on changes in spectral information (e.g., natural
frequencies) is negligibly small (Farrar and Jauregui, 1996).

The vector Z includes Zn, Za, and Zs that represent the fractional change in the square of the natural
frequencies, the antiresonant frequencies, and the SCD frequencies, respectively.
Z ¼ Zn Za Zsf gT ð14Þ
or
Z ¼ zn1 zn2 � � � zni � � � znm : za1 za2 � � � zaj � � � zan : zs1 zs2 � � � zsk � � � zsp
� �T

ði ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ; pÞ ð15Þ
where i, j, and k represent the number of natural frequencies, antiresonant frequencies, and static compli-
ance dominant frequencies available, respectively, and zni , zaj, zsk are the fractional change in the ith nat-
ural frequency, the fractional change in the jth antiresonant frequency, and the fractional change in the kth
SCD frequency given by
zni ¼
�x2
ni � x2

ni

x2
ni

; zaj ¼
�x2
aj � x2

aj

x2
aj

; zsk ¼
�x2
sk � x2

sk

x2
sk

ð16Þ
where xni is the measured natural frequency; �xni is the corresponding value for the initial structure; xaj is
the measured antiresonant frequency; �xaj is the corresponding value for the initial structure; xsk is the mea-
sured SCD frequency and �xsk is the corresponding value for the initial structure.

From (13), it can be deduced that the fractional change in structural stiffness, a, may be expressed by
a ¼ F�1Z ¼ F�1

Zn

Za

Zs

8><
>:

9>=
>;

ð17Þ
where Z is the (m + n + p) · 1 column matrix, F is the (m + n + p) · q matrix, and a is the (q · 1) column
matrix when there are q unknown structural parameters to be identified.

For an underdetermined system that involves more unknowns than equations (i.e., (m + n + p) < q), the
rectangular matrix F does not have an inverse. A partial replacement for the inverse is provided by the
Moore–Penrose pseudoinvese, which is obtained by
F�1 ¼ FTðFFTÞ�1 ð18Þ

In a similar way, the pseudoinverse of a rectangular matrix F for an overdetermined system (i.e.,

(m + n + p) > q) is given by
F�1 ¼ ðFTFÞ�1
FT ð19Þ
It should be noted that the solution obtained by (18) is the minimal norm solution and may not be
unique.

3.2. Updating algorithm

The relationship between the fractional stiffness change and the stiffness parameters for the jth element is
defined as (Choi and Stubbs, 2004)
aj ¼
Dkj
kj

ð20Þ
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where Dkj ¼ k	j � kj; k
	
j is the unknown stiffness parameter of the jth element of the existing structure; and kj

is the known stiffness parameter of the jth element of the initial structure. Eq. (20) can be rewritten as
k	j ¼ kjð1þ ajÞ ð21Þ
where aj is the fractional change in stiffness of the jth element.
Suppose that the corresponding sets of m resonant frequencies, n antiresonant frequencies, and p SCD

frequencies of the initial FE model and the existing structure are known. Before implementing (17) to get
the fractional stiffness changes of q elements between the initial and the existing structures, the sensitivity
matrix, F, should first be developed. The sensitivity matrix represents the relation between fractional
changes in stiffness and fractional changes in the frequencies of two structures.

The following procedure can be used to determine the sensitivity matrix: first, m resonant frequencies
are numerically generated for the initial FE model of a system; second, n antiresonant frequencies and p

SCD frequencies are computed from the FRF of the FE model using (1) and (6); third, a known frac-
tional stiffness change, aj at element j of the FE model is introduced and the corresponding m resonant
frequencies are numerically generated; fourth, based on a known parameter, aj, at element j of the FE
model, n antiresonant frequencies and p SCD frequencies are computed from the FRF such as the second
step; fifth, the fractional changes between the (m + n + p) initial frequencies and the (m + n + p) frequen-
cies corresponding to the parameter aj are computed using (16); sixth, each component of the jth column
of the matrix F is computed dividing the fractional changes in each frequency by the simulated severity at
the element j; and finally, the (m + n + p) · q matrix F is generated repeating the procedure for all q
elements.

With the F matrix obtained, the following 8-step algorithm is proposed to identify a target structure

1. Extract FRFs and natural frequencies from the target structure (i.e. an existing structure).
2. Compute the antiresonant frequencies and the SCD frequencies of the target structure.
3. Select an initial FE model of the structure utilizing all possible knowledge about the design and construc-

tion of the structure.
4. Compute the natural frequencies, the antiresonant frequencies and the SCD frequencies of the initial FE

model.
5. Compute the sensitivity matrix, F, for the FE model.
6. Compute the fractional changes in frequencies between the FE model and the target structure.
7. Fine-tune the FE model by first solving (17) to estimate stiffness changes and next solving (21) to update

stiffness parameters of the FE model.
8. Repeat steps 1–7 until Z 
 0 or a 
 0 when the structural parameters of the FE model are identical to the

existing target structure.
4. Verification

Using simulated data from a simple mechanical system, the performance of the proposed parameter
identification method using the additional spectral information, i.e., antiresonant frequencies and SCD fre-
quencies, is investigated. The mechanical model selected here to evaluate the methodology is shown in
Fig. 2. The three-degree-of-freedom, undamped, mechanical system consists of three unequal masses,
mi (i = 1,2,3), that are interconnected and anchored to their supports by six linear spring elements, ki
(i = 1,2, . . . , 6). The stiffnesses, masses, and the material properties of the model are listed in Table 1. In
this study, the masses of the model are assumed to be known and thus the six stiffness parameters of the
system are the only elements to be identified.
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Fig. 2. Configuration of the mechanical system.

Table 1
Material properties of the mechanical system

Element

Stiffness k1 k2 k3 k4 k5 k6
2 1 1 2 2 1

Mass m1 m2 m3

0.8 2.0 1.2
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For following initial values of the structural properties are assumed:

(1) Case 1—the initial assumed stiffnesses are 10% less than the true stiffnesses
(2) Case 2—the initial assumed stiffnesses are 20% less than the true stiffnesses
(3) Case 3—the initial assumed stiffnesses are 50% less than the true stiffnesses

These three cases are selected to demonstrate the rate of convergence and the accuracy of the prediction
as a function of the distance of the initial guesses from the true values. The spectral information of the
unperturbed system and the three initial systems are summarized in Table 2.

The system identification procedure defined in the previous section was performed to identify the struc-
tural stiffness parameters of the system. First, the identification was performed with 3 natural frequencies.
The results can be seen in Tables 3–5. The results show that the maximum errors in the estimated structural
parameters for Case 1, Case 2, and Case 3 are 1.81%, 3.56%, and 8.93%, respectively. Figs. 3 and 4 show the
magnitude and phase plots of the FRF for the system with the identified stiffness and the true stiffness for
Case 3. In Figs. 3 and 4, it is shown that the antiresonant frequencies of the system do not match up even
though the natural frequencies fit.

To investigate the performance of the parameter identification including additional spectral information,
numerical simulation sets were conducted using the following combination of natural frequencies and anti-
resonant frequencies, and/or SCD frequencies: (1) Group 1—natural frequencies and antiresonant frequen-
cies from point FRFs (utilizing 5, 7, and 9 pieces of data); (2) Group 2—natural frequencies and
antiresonant frequencies from transfer FRFs (utilizing 4, 5, and 6 pieces of data); (3) Group 3—natural
frequencies and antiresonant frequencies from point and transfer FRFs (utilizing 12 pieces of data); (4)
Group 4—natural frequencies and static compliance dominant frequencies (utilizing 5 and 9 pieces of data);
and (5) Group 5—natural frequencies, antiresonant frequencies, and static dominant frequencies (utilizing
7 pieces of data).

In Group 1, 5 pieces of information consisting of 3 natural frequencies and 2 antiresonant frequencies
obtained from the point FRF (H11); 7 pieces of information consisting of 3 natural frequencies and 4 anti-
resonant frequencies obtained from two point FRFs (H11 and H22); and 9 pieces of information consisting



Table 2
Natural frequencies and additional spectral information of the mechanical system

Mode Frequency (rad/s)

Target Case 1 Case 2 Case 3

Natural frequency 1 1.173 1.113 1.049 0.830
2 1.848 1.753 1.653 1.306
3 2.354 2.234 2.106 1.665

Antiresonant frequencies from point FRFs 1–2 (H11) 1.319 1.251 1.179 0.932
2–3 (H11) 1.896 1.799 1.696 1.314
1–2 (H22) 1.688 1.601 1.510 1.194
2-3 (H22) 2.342 2.222 2.095 1.656
1–2 (H33) 1.343 1.274 1.201 0.950
2–3 (H33) 2.279 2.162 2.039 1.612

Antiresonant frequencies from transfer FRFs 1–2 (H12) 2.041 1.936 1.826 1.443
1–3 (H13) 1.581 1.500 1.414 1.118
2–3 (H23) 2.500 2.372 2.236 1.768

SCD frequencies from point FRFs 1–2 (H11) 1.253 1.189 1.121 0.886
2–3 (H11) 1.878 1.782 1.680 1.328
1–2 (H22) 1.494 1.417 1.336 1.056
2–3 (H22) 2.041 1.937 1.826 1.443
1–2 (H33) 1.276 1.210 1.141 0.903
2–3 (H33) 2.182 2.070 1.952 1.544

Table 3
Comparison of identified structural parameters for Case 1

Pieces of information Element stiffness (lb/in) Max. error
(%)

k1 k2 k3 k4 k5 k6

SI 3 NF 2.034 0.986 0.992 2.036 1.976 0.987 1.81

SI using additional
spectral information

5 NF and AF from point FRFs 1.998 1.006 0.991 2.019 1.992 0.997 0.95
7 2.000 1.000 1.000 2.000 2.000 1.000 0.00
9 2.000 1.000 1.000 2.000 2.000 1.000 0.00

4 NF and AF from transfer FRFs 2.036 0.988 0.991 2.034 1.997 0.986 1.69
5 2.023 0.991 1.007 1.991 1.997 0.993 1.16
6 2.000 1.000 1.000 2.000 2.000 1.000 0.00

12 NF and AF from point and transfer FRFs 2.000 1.000 1.000 2.000 2.000 1.000 0.00

5 NF and SCDF from point FRFs 1.998 1.006 0.991 2.019 1.992 0.997 0.93
9 2.000 1.000 1.000 2.000 2.000 1.000 0.00
7 ASI 2.000 1.000 1.000 2.000 2.000 1.000 0.00

True element stiffness 2.000 1.000 1.000 2.000 2.000 1.000

NF—natural frequencies, AF—antiresonant frequencies; SCDF—static compliance dominant frequencies; ASI—additional spectral
information.
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of 3 natural frequencies and 6 antiresonant frequencies obtained from three point FRFs (H11, H22, and
H33). In Group 2, 4 pieces of information consisting of 3 natural frequencies and 1 antiresonant frequencies
obtained from the transfer FRF (H12); 5 pieces of information consisting of 3 natural frequencies and 2
antiresonant frequencies obtained from two transfer FRFs (H12 and H13); and 6 pieces of information con-
sisting of 3 natural frequencies and 3 antiresonant frequencies obtained from three transfer FRFs (H12,H13,



Table 5
Comparison of identified structural parameters for Case 3

Pieces of information Element stiffness (lb/in) Max. error
(%)

k1 k2 k3 k4 k5 k6

SI 3 NF 2.179 0.928 0.951 2.178 1.900 0.937 8.93

SI using additional
spectral information

5 NF and AF from point FRFs 1.989 1.028 0.954 2.097 1.962 0.983 4.84
7 2.000 1.000 1.000 2.000 2.000 1.000 0.00
9 2.000 1.000 1.000 2.000 2.000 1.000 0.00

4 NF and AF from transfer FRFs 2.183 0.935 0.950 2.173 1.899 0.932 8.63
5 2.117 0.956 1.034 1.959 1.987 0.965 5.89
6 2.000 1.000 1.000 2.000 2.000 1.000 0.00

12 NF and AF from point and transfer FRFs 2.000 1.000 1.000 2.000 2.000 1.000 0.00

5 NF and SCDF from point FRFs 1.989 1.028 0.953 2.099 1.962 0.982 4.93
9 2.000 1.000 1.000 2.000 2.000 1.000 0.00
7 ASI 2.000 1.000 1.000 2.000 2.000 1.000 0.00

True element stiffness 2.000 1.000 1.000 2.000 2.000 1.000

NF—natural frequencies, AF—antiresonant frequencies; SCDF—static compliance dominant frequencies; ASI—additional spectral
information.

Table 4
Comparison of identified structural parameters for Case 2

Pieces of information Element stiffness (lb/in) Max. error
(%)

k1 k2 k3 k4 k5 k6

SI 3 NF 2.069 0.972 0.983 2.071 1.955 0.975 3.56

SI using additional
spectral information

5 NF and AF from point FRFs 1.996 1.011 0.982 2.038 1.985 0.993 1.91
7 2.000 1.000 1.000 2.000 2.000 1.000 0.00
9 2.000 1.000 1.000 2.000 2.000 1.000 0.00

4 NF and AF from transfer FRFs 2.072 0.976 0.982 2.068 1.955 0.972 3.16
5 2.046 0.983 1.013 1.983 1.994 0.986 2.32
6 2.000 1.000 1.000 2.000 2.000 1.000 0.00

12 NF and AF from point and transfer FRFs 2.000 1.000 1.000 2.000 2.000 1.000 0.00

5 NF and SCDF from point FRFs 1.998 1.007 0.989 2.024 1.990 0.996 1.18
9 2.000 1.000 1.000 2.000 2.000 1.000 0.00
7 ASI 2.000 1.000 1.000 2.000 2.000 1.000 0.00

True element stiffness 2.000 1.000 1.000 2.000 2.000 1.000

NF—natural frequencies, AF—antiresonant frequencies; SCDF—static compliance dominant frequencies; ASI—additional spectral
information.

D. Nam et al. / International Journal of Solids and Structures 42 (2005) 4971–4987 4981
and H23). In Group 3, 12 pieces of information consisting of 3 natural frequencies, 6 antiresonant frequen-
cies obtained from three point FRFs (H11, H22, and H33), and 3 antiresonant frequencies obtained from
three transfer FRFs (H12, H13, and H23). In Group 4, 5 pieces of information consisting of 3 natural fre-
quencies and 2 SCD frequencies obtained from a point FRF (H11); and 9 pieces of information consisting
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of 3 natural frequencies and 6 SCD frequencies obtained from a point FRF (H11, H22, and H33). In Group
5, 7 pieces of information consisting of 3 natural frequencies, 2 antiresonant frequencies obtained from a
point FRF (H22), and 2 SCD frequencies obtained from a point FRF (H11).

The system identification results for the 5 groups are summarized in Tables 3–5 for Cases 1–3, respec-
tively. The accuracy of the different parameter identification results are compared via the maximum per-
centage errors of the identified stiffnesses of the elements, as shown in the tables. From Table 3, while
the maximum error in the identified stiffness parameters obtained when using 3 natural frequencies is
1.81%, the maximum errors including additional spectral information are 1.69% when using 4 pieces of
information, 1.16% when using 5 pieces of information, and 0% when using more than 6 pieces of infor-
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Fig. 3. 12 point FRF amplitude and phase plots for Case 3—using natural frequencies only. (a) FRF and phase plot for H11, (b) FRF
and phase plot for H22 and (c) FRF and phase plot for H33.
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mation. From Table 4, while the maximum error in the identified stiffness parameters obtained when using
3 natural frequencies is 3.56%, the maximum errors including additional spectral information are 3.16%
when using 4 pieces of information, 2.32% when using 5 pieces of information, and 0% when using more
than 6 pieces of information. From Table 5, while the maximum error in the identified stiffness parameters
obtained using 3 natural frequencies is 8.93%, the maximum errors including additional spectral informa-
tion are 8.63% when using 4 pieces of information, 5.89% when using 5 pieces of information, and 0% when
using more than 6 pieces of information. From the tables, it can be also observed that better results could
be obtained using the point FRFs than using the transfer FRFs. One notable observation is that, with the
addition of the SCD frequencies to the natural frequencies, the accuracy of the stiffness identification is
equally effective as using the antiresonant frequencies. These results show that the SCD frequencies can also
be utilized in SI problems.
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Fig. 4. Transfer FRF amplitude and phase plots for Case 3—using natural frequencies only. (a) FRF and phase plot for H12, (b) FRF
and phase plot for H13 and (c) FRF and phase plot for H23.
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Fig. 5. Point FRF amplitude and phase plots for Case 3—with additional spectral information. (a) FRF and phase plot for H11, (b)
FRF and phase plot for H22 and (c) FRF and phase plot for H33.
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Figs. 5 and 6 show the magnitude and phase plots of the FRFs for the system with the identified stiffness
and the true stiffness for Group 1 using 7 pieces of information (3 natural frequencies + 4 antiresonances
for point FRFs, H11 and H22). To compare with the results using only natural frequencies in Figs. 3 and 4,
the results of the same case, Case 3, are depicted. Note that the natural frequencies and antiresonant fre-
quencies of the system match up in Figs. 5 and 6.
5. Discussion

In the preceding section, the improvement in the performance of parameter estimation using additional
spectral information was validated via a numerical example of a mechanical system. As expected, with addi-
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Fig. 6. Transfer FRF amplitude and phase plots for Case 3—with additional spectral information. (a) FRF and phase plot forH12, (b)
FRF and phase plot for H13 and (c) FRF and phase plot for H23.
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tional spectral information, more accurate parameter estimation results can be obtained compared to those
using only natural frequencies. Notably, if the number of pieces of spectral information used is equal or
greater than the number of stiffness parameters to be identified, the error in the prediction of the stiffness
parameters is zero, regardless of the starting point of the iteration. These results suggest that there may be a
significant advantage of utilizing additional spectral information in parameter identification problems. In
most real-world applications, only a few natural frequencies can be extracted from dynamic testing, and
this limitation has been one of the major disadvantages of frequency-based SI methods. However, as shown
in Table 2, utilizing additional spectral information can expand data space and, accordingly, can enhance
the capability as well as the accuracy of the parameter identification process. For example, if n numbers of
natural frequencies are extractable for a given system, one can expand the data space by extracting an addi-
tional (n � 1) number of antiresonant frequencies and 2 · (n � 1) number of SCD frequencies from a sin-
gle FRF, as shown in Fig. 1. Furthermore, as shown in Table 2, unlike natural frequencies, the values of the
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antiresonant and SCD frequencies are different for each and every FRFs. Thus, if a system is complex and
consists of more unknown stiffness parameters than the available resonant frequencies, one can further ex-
pand the data space by extracting additional antiresonant and SCD frequencies from other FRFs and con-
sequently improve the accuracy of parameter identification process.
6. Conclusions

In this paper, the application of additional spectral information, i.e., antiresonant frequencies and SCD
frequencies, to the parameter identification in mechanical problems was presented. The motivation of this
study was to investigate the feasibility of utilizing additional spectral information to parameter identifica-
tion problems and to improve the performance of parameter identification by supplying more information
to a sensitivity-based SI technique. The purpose of this study was to extend the sensitivity-based method to
accommodate additional spectral information. The performance of utilizing additional spectral information
was compared with that of utilizing only natural frequencies via a numerical example of a mechanical
system.

From the numerical study, the following observations can be drawn:

1. with additional spectral information such as antiresonant and SCD frequencies, the accuracy of param-
eter identification can be improved;

2. if the number of spectral pieces of information from FRFs used is equal to or greater than the number of
stiffness parameters to be identified, the error in the identified stiffnesses is greatly reduced, regardless of
the starting point of the estimated solutions;

3. better parameter identification results were observed to be obtained using the point FRFs than using the
transfer FRFs; and

4. the SCD frequencies can be utilized in SI problems.

The simple system presented in the preceding section may not reflect the complexity and uncertainty of
real systems; however, the purpose of this paper is to establish the feasibility of the approach. More exten-
sive study on the applicability of the additional spectral information especially to real structures will be ad-
dressed in subsequent studies.
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